Performance Evaluation
모델 변환 성능을 높이기 위한 모니터링 방법
Performance Evaluation
import numpy as np
import cv2
from rknn.api import RKNN
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN(verbose=True)
# Pre-process config
print('--> Config model')
rknn.config(
mean_values=[[0.485*255, 0.456*255, 0.406*255]],
std_values=[[0.229*255, 0.224*255, 0.225*255]],
quant_img_RGB2BGR=True,
target_platform='rk3588')
print('done')
# load rknn model
print('--> Load rknn model')
ret = rknn.load_rknn('depth_anything_vits_OP19.rknn')
if ret != 0:
print('Load rknn model failed!')
exit(ret)
print('done')
# Set inputs
img = cv2.imread('front.jpg')
img = np.expand_dims(img, 0)
print('--> List devices')
rknn.list_devices()
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime(target='rk3588', perf_debug=True, eval_mem=True, core_mask=RKNN.NPU_CORE_0_1_2)
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
print('--> Get sdk version')
sdk_version = rknn.get_sdk_version()
print(sdk_version)
# eval perf
print('--> Eval perf')
rknn.eval_perf()
# eval perf
print('--> Eval memory')
rknn.eval_memory()
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img], data_format=['nhwc'])
np.save('./depth_anything_eval_perf.npy', outputs[0])
# show_outputs(outputs)
print('done')
rknn.release()
Last updated